
Practical State Machines for Computer Software

and Engineering

Victor Yodaiken

January 7, 2016

Abstract

This paper introduces methods for describing properties of possibly
very large state machines in terms of solutions to recursive functions and
applies those methods to computer systems.

1 Introduction

A computer program or computing
device changes state in discrete steps in response to discrete events. If E is the
set of events and E∗ is the set of finite sequences over E, then each element
s ∈ E∗ describes a sequence of events that drives a system from an inital state
to some current state. An equation of the form

y = F (x)

where x is a free variable over E∗ defines y as a discrete “state variable”. The
underline is a mental aid to remind us that state variables of this sort depend
on the sequence parameter. If y = F (x) and z = G(x) then

y < z

is true if and only if F (x) < G(x) for all x ∈ E∗. Three operators on these
state variables make it possible to define state variables for large scale state
systems while leaving F and often E implicit. The first is a kind of “zero”.
If nulls is the empty sequence and y = F (x) then initial y = F (nulls). So
initial y is the initial state value of y. The second modifer is like “add one” -
it extends the sequence by one event so that after e y = F (x.e) where s.e is
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the sequence obtained by appending event e to sequence s. The third operator
is for substitution and, as shown below, can be used to define state variables of
systems that are constructed by interconnecting parallel components in layers.
For the same y let sub u y = F (u). The fun cases are when u is itself a state
variable. Suppose z is sequence valued in which case sub z y = F (z) = F (G(x)).

The approach outlined above is built on three components. The first is a
conception of state machines (automata) as maps F : E∗ → X that was men-
tioned in a number of works from the 1960s but made explicit in for example
Arbib [1] in a slightly different form. Second, Peter [7] defined a class of prim-
itive recursive word functions that extended primitive recursion on integers to
primitive recursion on words (sequences). This formulation inspires the first
two operators - although, it is related to Arbib’s sequentiality property. The
last operator imports a general automata product [3] — perhaps the biggest
jump here. The general product offers a way of abitrarily connecting state ma-
chines so that outputs can help steer inputs. This feeback of outputs is essential
for representing how computer components connect but mainstream automata
theory was too entranced by Krohn-Rhodes[5] theory to look into it much.

The next section clarifies the state machine and primitive recursive function
basis of the methods. Section 3 illustrates applications to simple examples and
to reliable message delivery. There is a short final section on more compact
notation – the limited notation used here is wordier than it needs to be in an
effort to make it more readily comprehensible.

2 State machines

Classically, if a map γ is defined by a pair of equations γ(0) = x0 and γ(n+1) =
α(γ(n)) where α is already defined, we know that γ is well defined on all non-
negative integers. This construction is called “primitive recursion”. Peter[8]
observed that the same construction works for finite sequences where appending
takes the place of “add one”. So if F (nulls) = x0 and F (w.e) = G(F (w), e)
then, if G is well-defined, so is F . This construction is fundamental to how state
machines operate: computing the “next state” from the “current state” and the
next input event.

2.1 State machines

A deterministic state machine is usually given with some variant of: M =
(E,X, S, ι, δ, λ) where set E is the alphabet of events, set X is the set of outputs.
The set S is the state set and ι ∈ S is the initial state. The map δ : S ×E → S
is the transition map and λ : S → X is the output map which defines the
difference between internal state and visible state. I am going to call this a
”generalized Moore machine” because it is a classical Moore machine[6] without
a restriction to finite sets. All actual digital computing devices are finite state,
but infinite state machines can be useful abstractions even when thinking about
finite devices - as seen in the examples below.
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Given a generalized Moore machine M = (E,X, S, ι, δ, λ) the primitive re-
cursive extension of δ to sequences in E∗ is straightforward. Let δ∗(null) = ι
and let δ∗(w.e) = δ(δ∗(w), e). To avoid wasting another letter define: M∗(w) =
λ(δ∗(w)). The map M∗ is a primitive recursive function on finite words over E.

The construction of a generalized Moore machine from a map f : E∗ → X is
straightforward as well. Suppose f : E∗ → X is given and define an equivalence
relation as follows:

if w, z ∈ E∗ then w ∼f z iff (∀u ∈ E∗)f(concat(w, u)) = f(concat(z, u))

where concat is concatenation of sequences. Note that if w ∼f z then w.e ∼f
z.e. Partition E∗ into sets {w}f where {w}f = {z : z ∈ E∗, w ∼f z}. Let
Sf = {{w}f : w ∈ E∗} be the state set1. Then define δf ({w}f , e) = {w.e}f and
λf ({w}f ) = f(w). The state machine defined in this way Mf has initial state
{null}f . It’s easy to see that M∗f = f . This type of construction is basically the
the same as state machine minimization and is well known in a slightly different
context2.

2.2 State machine products

Gecseg [3] has a nice formulation of a “general product” of automata that is
fairly simple as a block diagram.

Adapting it to generalized Moore machines, the idea is that we have an
alphabet of events E, a collection of (not necessarily distinct) generalized Moore
machines M1 . . . ,Mn and a collection of maps φi : E ×X1 × . . . Xn → Ei. The
product machine is constructed by letting each φi steer each component state
machine depending on the input from E and the “feedback” which is the output
of the component machines.

1If we define the congruence by z ∼=f w ↔ (∀u, v)(f(uzv) = f(uwz)) then instead of a
state set we get a monoid under concatenation of representative elements.

2There are an infinite number of distinct generalized Moore machines that generate the
same primitive recursive map M∗, but the differences between those machines are not inter-
esting for our purposes. In fact, those differences are essentially artifacts of the presentation
if all we are interested in is modeling the behavior of discrete state systems.
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The product machine M = Πn
i=1[Mi, φi] has a state set consisting of the

cross product S = ×ni=1Si and a transition map δ(s, a) = (δ(s1, e1), . . . δ(sn, en))
where s = (s1, . . . sn) and ei = φi(e, λ1(s1), . . . λn(sn)) 3.

The primitive recursive nature of the general product should be reasonably
clear. If fi = M∗i then define gi(nulls) = nulls and gi(w.s) = gi(w).φi(e, g1(w), . . . gn(w)).
Then F (w) = (f1(g1(w)), . . . fn(gn(w)) defines F so that F = M∗ for the prod-
uct machine M .

2.3 State variables

For any generalized Moore machine, M , then, there is a y so that y = M∗(x).
If y is specified in terms of initial and after e then there is an M so that
y = M∗(x). Of course it is possible to define state variables that do not have
solutions or that have many solutions. To accomplish the product construction
with state variables, assume that we have y

1
. . . , y

n
. where each y

i
= fi(x).

Now construct ui by

initial ui = nulls (1)

after e ui = ui.φi(e, sub u1 y1, ...sub un yn) (2)

Y = (sub u1 y1, . . . sub un yn) (3)

A further step where components can move multiple steps on a single step of the
product is also simple and preseves the state machine semantics. For this case
the maps φi are sequence valued and we use concatenation instead of appending.

after e ui = concat(ui, φi(e, sub u1 y1, ...sub un yn))

Say that a state variable y is “finite state” if y = f(x) where Sf (the partition
of E∗ by the equivalence relation ∼f ) is finite. Note that if each y

i
is finite state,

then Y is finite state in the construction above even when the feedback maps
are finite sequence valued.

3 Illustrative example

3.1 Simple examples

I’m going to define some examples y = f(x) and then “solve for” f to build
some intuition about what the operators do.

3This type of product was described in a by-the-way manner in multiple works in early
automata research – for example in Hartmanis[4]. Researchers, however, early on became
focused on ”loop free” decomposition of automata for a number of reasons including the very
interesting relationship between automata decomposition and group theory that is described
in the Krohn-Rhodes theorem. By the 1970s, more general automata products were such an
obscure topic that people writing papers about formal methods routinely claimed that it was
not possible to model interaction and parallel computation with plain old state machines.
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• A mod c counter that counts events:

initial C = 0,
after e C = C + 1 mod c.

Implictly C = f(x) for some f . Since initial C = f(nulls) = 0 and

after e C = f(x.e)
= C + 1 mod c
= f(x) + 1 mod c

f is completely defined and so is C.

• An unbounded counter that counts events:

initial Cunbounded = 0,
after e Cunbounded = Cunbounded + 1.

• Two connected mod c counters - to illustrate substitution. First define D
to be composed from the previously defined mod c counter C and sub u C
where u is to be defined. Here ∗ is just ordinary multiplication.

D = C + c ∗ sub u C

Now define u.
initial u = nulls,

after e u =

{
u.e if C = c− 1;

u otherwise.

Solve for g so that u = g(x) remembering that C = f(x).

initial u = g(nulls) = nulls
after e u = g(x.e)

=

{
u.e = g(x).e if f(x) = c− 1;

u = g(x) otherwise.

so g is completely defined and so is u. Now solve for h so that D = h(x).

h(x) = D
= C + c ∗ sub u C
= f(x) + c ∗ f(g(x))

• It is not necessary for state variables to be scalar valued. In fact, because
of the nature of computer systems where code and data are fluid categories,
map valued state variables are natural. Consider a queue to be a map from
non-negative integers to queued values where Q(1) is the first element,
Q(2) is the second and so on. To start, I’ll assume we have no bound on
the length of the queue, although such a thing is impossible in real-life,

5



and that there is some special element nullv so that Q(i) = nullv if there
is no value at position i. Suppose there is a set V of possible values to be
put in the queue (of course, nullv /∈ V ). The events that change queue
state are deq and enq[v] for v ∈ V . Events not in those sets are just
ignored.

Q(i) = nullv and j > i→ Q(j) = nullv
initial Q(1) = nullv

after e Q(i) =


v if e = enq[v], v ∈ V and i = 1

Q(i− 1) if e = enq[v], v ∈ V and i > 1

Q(i+ 1) if e = deq

Q(i) otherwise

• What about a bounded length queue? There are a number of alternatives
for what happens when someone tries to push such a queue beyond its
boundaries. One is to just leave it unspecified. Suppose the queue has
a maximum length of c elements. Then we might only specify behavior
when the queue is not empty and has never been over-filled.

CQ is a c queue if Q(1) 6= nullv and HighWater < c→ CQ = Q(1)
initial HighWater = 0
after e HighWater = max{HighWater, max {i : Q(i) 6= nullv}}

In this case, Q is just used to define how the actual bounded queue must
behave. There are an infinite number of maps h so that CQ = h(x) since
nothing is said about the value of CQ if the high water mark is ever passed

or if the queue is empty4.

3.2 Reliable broadcast

For a less trivial example, I’m going to describe a computer network and algo-
rithms for committing messages. A common set of network properties is that
message transmit is a broadcast (can be received by some or all other nodes),
is unreliable (in that messages may not be received), and that there are no
spurious messages (a received message must have been sent). To “commit” a
message, a sender has to be assured that all recipients in a group have received
the message. Describing this system in terms of state variables permits us to
leave most of the behavior of the network unspecified, which is good because the
network has an enormous number of states and depends on many parameters
we don’t want to even think about here.

I want to begin with state variables for network nodes (the computers con-
nected to the network). These are undoubtedly complex objects, but we only

4The so-called “formal methods” literature is replete with many examples of researchers
mistaking ”not-specified” for ”non-deterministic”. The first is a quality of the specification.
The second is a property of a mathematical object. Specifying that an engineered computer
system is non-deterministic, seems to me something that one would rarely if ever need to do.
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need some simple properties. Suppose we have a set Messages of messages.
and a state variable T that indicates what, if any, messsage the node wants to
transmit in the current state. As is common with variables like this, we need a
value nullm /∈ Messages to indicate ”no message”, so T = m ∈ Messages means
that in the current state the node is attempting to transmit m and T = nullm
means the node has nothing to say in the current state. The event alphabet
Enode should include one event tx to indicate that a message has been trans-
mitted and one event rx[m] for each m ∈ Messages to indicate that message m
has been received by the node 5. There can be any number of other events in
Enode but those are not things we have to specify here.

To keep track of which messages the node has received and sent we can
define two state variables that are set valued. R is the set of messages that have
been received and S is the set of messages that have been sent. These don’t
necessarily correspond with anything implemented in the node computer, they
are just abstract properties:

initial R = initial S = ∅

after e R =

{
R ∪ {m} if e = rx[m] for m ∈ Messages;

R otherwise.

after e S =

{
S ∪ {T} if e = tx and T ∈ Messages;

T otherwise.

In a more detailed treatment, we’d probably want to make messages expire
so that that, e.g. at some point a message m is no longer considered to be “
received” by a node. Expiry would allow reuse of messages. For this example,
however, we can assume the set of messages is effectively infinite.

Suppose we have a set N of node names and want to connect nodes together.
There will be an alphabet E for the network and a relationship between network
events and node events. For each node n, there is an event sequence un ∈ E∗node.
Then sub un T is the state variable T in the context of the state of node n.

Unlike the simple examples above, we don’t know nearly enough to specify
these completely. The initial state value will just have the node name – so that
each node begins life knowing its own name.

initial un = nulls.n

We can then require that each node know its own id:

sub un Id = n

Node internal events may be very complex, but all we care about is inter-
action with the network. First, to keep it simple, make sure that when the
network advances one step, each node advances at most one step.

after e un ∈ {un, un.e′, e′ ∈ Enode}
5The symbols rx[m] are, again, just indexed symbols. Think of the [m] as subscripts that

are not small font (easier to read) and higher than normal if you want.
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A rx[m] event needs to be associated with a tx event of the same message m 6.

after e un = un.rx[m]→ (∃n′)( after e un′ = un′ .tx
and sub un′ T = m ∈ Messages)

There is no reciprocity - a tx event may not be associated with any receive at
all. These constraints model an unreliable broadcast network with no spurious
messages.

Lemma 1 m ∈ sub un1
R→ (∃n2)(m ∈ sub un2

S)

Proof by induction on state. initial sub un1
= ∅ so there is nothing to prove.

Assuming the lemma in the current state, there is only one interesting case m /∈
sub un1

R and m ∈ after e sub un1
R. In this case after e un1

= un1
.rx[m]

so (∃n2)sub un2
T = m and after e un2

= un2
tx

The challenge is for one node to determine whether a group of other nodes
have received a particular message. That is, can we define a boolean map valued
state variable Commit so that for some G ⊂ N :

sub un Commit(G,m) = 1→ (∀n′ ∈ G)m ∈ sub un′ R

The obvious solution is to make each recipient send a matching acknowledg-
ment message for each data message. Suppose we have a subset D ⊂ Messages
so that for each d ∈ D and each n ∈ N there is a unique ad,n ∈ Messages which
is an acknowledgment of d from n. Require that a site transmit ad,n only if it
has received d and either it is node n or it is resending an ack it already received:

T = ad,n → d ∈ R and (Id = n or ad,n ∈ R).

Lemma 2 ad,n′ ∈ sub un R =⇒ d ∈ sub un′ R.

Let’s prove this for (∃n)ad,n′ ∈ sub un R =⇒ ad,n′ ∈ sub un′ S using
induction on state. Clearly true in the initial state. Suppose the left side is false
in the current state and true after e. Then by lemma 1 there is some n′′ so that
after dd,n′ ∈ sub un′′ S The hypothesis says that ad,n′ /∈ sub un′′ R so n′ = n′′

and d ∈ sub un′ R. Once a message is in R it stays there, so QED.
If Commit(G,m) is defined to be (∀n ∈ G)(ad,n ∈ R) the main result follows

immediately.
A better method relies on cycles of receivers each taking a turn [2] to

broadcast an ack. Suppose |G| = k is the number of nodes in the group and
π : {0...k − 1} → G is onto. Further suppose that data and ack messages carry
sequence numbers so di and ai have the same sequence number i. First, we
need to require that sequence numbers of messages that are sent are uniquely
identifying (a more detailed treatment would cycle sequence numbers).

di ∈ sub un1
S and d′i ∈ sub un2

S → d′i = di (4)

6Here I am providing a really simple model of a network where messages pass directly
between nodes. A more realistic model would have a network medium of some sort.
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Next: a node can send an ack ai only if is resending it (if it received it
already) or if π maps the sequence number mod k to the node identifier. As we
increase sequence numbers, we cycle through the set of nodes.

T = ai → π(i mod k) = Id or ai ∈ R (5)

Finally, the core of the algorithm is that acks are only sent if all previous mes-
sages and acks have been received.

T = ai →

{
∃di ∈ R and ∀j < i,∃aj , dj

aj ∈ R and dj ∈ R)
(6)

Suppose di ∈ sub un R and Suppose ai+k ∈ sub un R. It follows that
ai+k ∈ sub uπ((i+k) mod k) S which implies that there is a complete cycle of
nodes in G that have received di.

4 Some notes

4.1 Simplified notation

The goal here has been something that would help for sketching out designs on
paper – and perhaps a basis for some automated tools as well. For scratching
out specifications on paper, however, the notation for the three operators is a
little wordy. Usually, I omit the underline when the state variables are clear
from context. In place of initial y, I often write ↓ y. In place of after e y we
can write ey – just juxtaposition. And sub u y can be written u|y borrowing
some similar semantics from UNIX[9] where | is used to connect the output of
the value on the left to the input of the value on the right. The general product
equations starting at equation 1 above would then look like the following.

↓ ui = nulls

eui = ui.φi(e, u1|y1, ...un|yn)

Y = (u1|y1, . . . un|yn)

Notation is not the point of this work7 but using this notation declutters things
enough to better see, for example, what loop-free products look like.

4.2 Loop free and nearly loop free products

In a loop-free or cascade product φi references only ui|yi . . . un|yn:

eui = ui.φi(e, ui|yi, ...un|yn).

In this case, there is no feedback - each component i sees only the output from
the higher numbered components. There is a lot of work in algebraic automata

7This is not a formal methods paper.
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theory on the algebraic consequences of such a design[5]. Systems that can
be designed with this kind of communication pattern are perhaps amenable to
certain optimizations. I wonder also if decompositions that are “almost” loop-
free have interesting properties. Consider a shift register that shifts only left.
Let cell be a state variable for a single storage cell: ecell = e. A register of n
cells looks like Register = (u1|cell, . . . un|cell). A loop free shift right register
is implemented by defining ui as follows:

↓ ui = nulls

eui =

{
ui.(ui−1|cell) if i > 0;

ui.e if i = 1

Suppose, though that elements of E are (1, v) (shift in v to the right) and
(−1, v) (shift in v to the left).

(r, v)ui =

{
ui.(ui−r|cell) if 0 < r − i < n;

ui.v otherwise

In this case, Register is definitely not loop-free, but it operates in a loop-free
way for each event. Does that mean anything either algebraically for the un-
derlying monoid or for the structure of a primitive recursive word function?
Certainly, engineers work to reduce communication and synchronization com-
plexity in system design – e.g. by using time synchronization to replace hand-
shake protocols.
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