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PREFACE

Abstract automata theory may be defined, approximately, as the mathe-
matical investigation of the general questions raised by the study of informa-
tion-processing systems, be they men or machines. In particular, it focuses
on the algebraic and combinatorial problems so raised.

Automata theorists have attacked a wide range of problems. No book
could—or should—attempt to summarize all their studies. What this book
does do is present an overview of the classical results of automata theory,
as well as sample some of the most exciting areas of current research.

This book is perhaps the first advanced textbook in automata theory—
its scope is broader than that of any other book on automata theory, and it
treats many topics in greater depth than can be found outside specialized
research monographs. Yet the book is not exceptionally long, and it is self-
contained. A special feature that aids this compactness is that if the idea of a
proof can be made clear in a few lines, then the proof will be presented heu-
ristically to aid first-reading comprehension—details can then be supplied
by the serious student on a second reading, as he works the clearly marked
exercises which are distributed in appropriate places throughout the text.

The reader should have sufficient background in abstract algebra to be
able to assimilate a concise treatment of the basic notions of automata theory,
or know enough automata theory to be able to use Chapter 2 to acclimate
himself to the abstract mathematical approach.

An algebraic background might include the elements of set theory to-
gether with a course in group theory, up to and including the Jordan-Hoélder
Theorem. A reader who is completely at home with such material should
have no undue trouble with this book—and need have no previous study of
automata theory. This book should be well suited for a first course in auto-
mata theory for mathematicians.

A background in automata theory may be provided by any one of the
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vili PREFACE

excellent new introductory texts available, such as BootH [1967], HENNIE
[1968], or MiNskyY [1967]. I have been asked whether there is need for a text
in automata theory intermediate in level between such texts and the present
volume. My answer is ro—but there may be need of intermediate study of
abstract algebra. Thus the instructor using this book as text for a second
course in automata theory for computer scientists or engineers may need to
devote a few lectures to giving exercises and motivation to supplement the
summary of mathematical background given in Chapter 2 of this book.

Let us summarize the three parts of this book.

The first part is background. In Chapter 1, we present a mildly mathe-
matical survey of automata theory—an overview of the structures of auto-
mata theory and the main questions which we ask about them. This provides
a framework wherein we may locate the many topics of Parts 11 and III.
In Chapter 2, we summarize the mathematical concepts needed in abstract
automata theory—distinguishing the tools that must be used throughout from
those that are needed in one or two special investigations.

The second part might be subtitled ‘“What every literate automata theo-
rist ought to know.” It contains my choice of the topics without which one
cannot hope to follow the research literature. Chapter 3 treats finite auto-
mata, their minimization, circuits which realize them (and the complexity
thereof), the languages they characterize, and their relation to semigroups.
Chapter 4 treats Turing machines, even polycephalic ones, looks at the func-
tions they compute, studies the sets they define, and introduces the reader to
unsolvable decision problems (and proves Godel’s incompleteness theorem
as an application). Chapter 5 examines Post’s canonical systems, and then
concentrates on the context-sensitive and context-free grammars, relating
them to push-down automata and linear bounded automata, and proves the
basic results on ambiguity and undecidability of context-free languages. By
and large, then, Part 1l contains the material that most automata theorists
would want to see included in any thoroughgoing text.

The third part, after a preliminary study of partial recursive functions,
is devoted to the presentation of four of the many topics now at the forefront
of research in automata theory. They are: complexity of computation, alge-
braic decomposition theory, stochastic automata, and machines which com-
pute and construct. Here my choice is purely personal—I suspect that the
three main omissions which might be lamented are advanced topics in lan-
guage theory, the theory of algebra automata, and the relation between
mathematical logic and automata. But here we begin to leave the domain of
the general textbook and start to debate which monographs should best be
written to complement the basis which this book seeks to provide.

This book grew from lectures given at Imperial College, in London, in
1964, and at the University of New South Wales, in Sydney, in 1965. It has
improved greatly from the comments of my friends and students there, and
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in the last three years at Stanford. My main debt is to my fellow automata
theorists whose papers, correspondence, and discussion at meetings, have
provided much material and stimulation. I have tried to guide the reader to
their writings to shed more light on the material I have presented, but have
made no attempt to establish priority, or to find references for material which
is by now classical (which means, I suppose, that the material had appeared
in a textbook by 1963). The book has benefited much from my discussion with
Manuel Blum, P. C. Fischer, Shafee Give’on, J. Hartmanis, R. E. Kalman,
Bill Kilmer, W. Ogden, J. Rhodes, Fred Roberts, Bill Rounds, P. M. Spira,
Don Stanat and Paul Zeiger. To those others whose valued comments are
not explicitly acknowledged, my thanks and apologies, and a sincere hope
that they will read the book and find that their comments did not fall on deaf
ears. Finally, my thanks to Mrs. Rowena Swanson, who monitored the sup-
port given by the Air Force Office of Scientific Research, Information Science
Directorate, for much of my research reported herein. May this research
prove of interest to men of all nations, so that defense yields to the making

of friends.
MICHAEL A. ARBIB
Stanford, California



A NOTE
TO THE READER

All items, except figures, are numbered consecutively within each section.
A reference to item a means item a of the present section; to item b.a means
item a of section b of the present chapter; and to item c.b.a means item a
of section b of chapter ¢ of the present volume.

I have not presumed to tell the reader which sections to omit on a first
reading, but I have used a smaller typeface for material which the reader may
safely omit on a first reading of the section in which it occurs. Note that this
means that if an exercise is set in full-size type, then it is an integral part of
the text, and should be read and understood by the reader even if he is in no
mood actually to solve the stated problem.

The symbol O indicates that no more proof will be given of the last
numbered proposition that precedes it.

One more comment. This book will be published at least a year after
completion of the manuscript. Looking back, I think this book has stood the
test of time in that all the material in parts 1 and 11 and most of part 111, is
still essential for the repertoire of the automata theorist. However, the subject
is continually growing in breadth and depth, and the reader should augment
his study of this (or any other) textbook by a determined assault on the sym-
posium volumes of the JEEE Symposia on Switching and Automata Theory,
and of the ACM Symposia on Theory of Computing, and on journals such as
the Journal of the Association for Computing Machinery, Information and Con-
trol, and the IEEE Transactions on Computers, which are cited again and
again in the bibliography.
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'I AN OVERVIEW
OF AUTOMATA THEORY

. The Aims of Abstract Automata Theory
. The Manipulation of Strings of Symbols
. On-Line and Off-Line Machines

. Formal Languages

. Hierarchies and Diversities -

LA W~

This is the sort of introduction that should be read quickly before the
rest of the book, and slowly afterward. I do not attempt to give a detailed
tour of the subject matter of this book, nor a survey of those important
theorems which this book omits. Rather I try to provide a conceptual frame-
work in which the diverse topics of automata theory may be fitted. So many
different descriptions, so many different devices, engage our attention that at
times we wonder whether we are getting entangled unnecessarily in idiosyn-
cratic formalizations. While expecting that future research will polish many
of the results treated in this book, and reveal some of them as aspects of
deeper truths, nonetheless I hope to show that much of the diversity we en-
counter is desirable, stemming from our need to ask different types of ques-
tions about a basically coherent subject matter.

1.1 THE AIMS OF ABSTRACT AUTOMATA THEORY

The Oxford English Dictionary defines an automaton (plural, automata)
as “Something which has the power of spontaneous movement or self-motion;
a piece of mechanism having its motive power so concealed that it appears to
move spontaneously; now usually applied to figures which simulate the
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4 AN OVERVIEW OF AUTOMATA THEORY CHAP. 1

actions of living beings, as clockwork mice, etc.” Today the computer has
replaced the clockwork mouse as the archetype of the automaton; and with
it, our emphasis shifts from simulation of motion to simulation of information
processing. Automata theory, in its widest sense, might now embrace such
diverse activities as the building of a space station’s control system or the
programming of a computer to play chess. In the theory of abstract automata,
we are less concerned with the design of automata to do specific tasks, and
more concerned with understanding the capabilities and limitations of whole
classes of automata. One might say, then, that “Automata theory (the
qualification abstract is henceforth implied) is the pure mathematics of
computer science.” Of the several possible interpretations, the one I intend
is that, just as much of today’s pure mathematics can be seen to have evolved
from formalisms suggested by the problems of physics, so automata theory
is a branch of mathematics which draws inspiration and intuition from asking
questions about biological and electronic computers. The mathematics is
pure in that many of the questions are pursued for their intrinsic interest,
rather than in the hope of applications. And as answers to these questions
accumulate, one is led to look for mathematical generalizations which lay bare
the essential logic of the situation, stripped of the details unessential to
gaining a general understanding of the processes involved. That we persevere
even though some of these details were essential to the “real-world”’ problem
of getting an answer out of a computer by next Tuesday is what makes
us—at least on this occasion—automata theorists, rather than programmers
or designers of actual circuitry. I like to dream that automata theorists will
one day do for computer science what group theorists did for physics. Be
that as it may, it must be emphasized that automata theory is not to be thought
of as the study of a limited number of presently formalized objects. Rather, it
is a growing subject which gains richness and power from the intuition one
obtains by thinking about information-processing, and the consequent inter-
play between rigorous mathematics and the search for appropriate formaliza-
tions for this intuition.

If automata theory does not yet provide a magical key to the solution of
problems of everyday information-processing, it does have the following
virtues: (a) it is a fascinating branch of mathematics; (b) it provides a form
of mental discipline which will benefit system theorists, computer scientists,
and logical designers by giving them a powerful set of languages for setting
out their problems, even though it may not provide methods that can be
“plugged in”; and (c) certain techniques of automata theory are already
directly useful (though, in this book, I shall generally leave this implicit) and,
what is more important, automata theory is slowly building up for us a feel
for information-processing that will eventually help us do things for which no
amount of program-writing could provide the basis. We may note that
automata theory has already provided the following:
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(1) A characterization of a/l computable functions (e.g., as those computable
by Turing machines)—it being now a highly active area of research to find
which of the concomitant computations are practicable—together with the
demonstration that no computer can compute, of an arbitrary computer,
whether or not that second computer will ever halt.

(2) The demonstration of universality—that there is a computer which can do
the job of any other computer provided that it is suitably programmed.

(3) Parsing systems for formal languages, and concomitant automata, which
form the basis for a rigorous treatment of compilers for computer lan-
guages.

We may expect further progress in automata theory to provide an ever richer
Jramework for the solution of practical problems—as the theorist proves
theorems of the kind “Every X in the relation R to ¥ must have property Z,”
so will the circuit designer learn to check the Z factor each time he builds an
R device.

1.2 THE MANIPULATION OF STRINGS OF SYMBOLS

Consider the item displayed on the next line:
1 0011

Is it “ten thousand and eleven” or “nineteen in binary notation”? Clearly, it
is in fact a string (we use “string” as a synonym for “sequence”) of five
symbols, of which the first, fourth, and fifth are 1’s, while the second and
third are 0’s. Whether we choose to interpret this string of symbols as a
decimal number or binary number, or as something else, depends on our
“mental set,” on the context. To a binary computer 100 1 1 is “nineteen”’;
to a decimal computer it is “ten thousand and eleven.” Similarly, the function
which places 0 at the end of a string of 0’s and 1’s is, to a binary computer,
“multiplication by two,” whereas to a decimal computer, it is “multiplication
by ten.”

The point I am trying to make, then, is the familiar one that computers
are symbol-manipulation devices. What needs further emphasis is that they
are thus numerical processors, but the numerical processing that they undertake
is only specified when we state how numbers are to be encoded as strings of sym-
bols which may be fed into the computer, and how the strings of symbols printed
out by the computer are to be decoded to yield the numerical result of the
computation.

Our emphasis in what follows, then, is on the ways in which information-
processing structures (henceforth called automata) transform strings of sym-
bols into other strings of symbols. Sometimes it will be convenient to
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emphasize the interpretation of these strings as encodings of numbers, but
in many cases we shall deem it better not to do so.

Let us, then, introduce some basic terminology. We shall usually use X
to denote the input alphabet, the set of symbols from which we may build up
strings suitable for feeding into our automaton. The symbol Y will usually
denote the ourput alphabet, our automaton emitting strings of symbols from
Y. '

Given any set 4, we shall denote by A* the set of all finite sequences of
elements from A, and shall call the number of symbols, /(a), in a sequence «
the length of a. For mathematical convenience, we shall include in A* the
empty sequence A of length 0. We need A for the same reason that we had to
invent the number 0. Just as it became distinctly unhelpful to write “x with
nothing added to it™ instead of “x + 0, so we prefer to say “input A” rather
than “no input was supplied.” It allows us to state many theorems in general
form, without having to treat “no input” as a special case. Given two
sequences a = a,...a, and 8 = b,...b, we may concatenate them to
obtain a-f=a;...a,b,...b, and for all a we set A =A-a = a.

Thus X* will usually denote the set of all input strings to our automaton,
and Y* will indicate a set which includes all possible output strings of our
automaton.

Our general notion of an automaton, then, is a device to which we may
present a string of symbols from X*. If and when the machine finishes com-
puting on this string, the result will be an element of Y*. We say “if” because

certain input strings may drive the computer into a “runaway”’ condition—
e.g., endless cycling through a loop—from which a halt is impossible without
external intervention (which amounts to changing the input string). This case
might correspond to associating with the machine a device which produces an
infinite string of elements of Y for each string in X*—but, in fact, this view-
point will only be taken in Section 7.2, and so we shall not treat it further in
this chapter.

Thus, in a very general form, we may say that automata theory is the
study of partial functions F: X* — Y*—that is, ways whereby some of the
strings in X* have assigned to them output strings from Y*, it being under-
stood that for other input strings x, the function F(x) may not be defined at
all. However, such a function becomes truly a part of ‘“classical” automata
theory only if we can relate it to a finitely specifiable substrate—or if we are
eager to prove that no such substrate exists for it. Of course, once one has
developed a body of theorems, one sees how they can be generalized if the
finiteness condition is removed, so this criterion does not cover all of present-
day automata theory.
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1.3 ON-LINE AND OFF-LINE MACHINES

We have said that automata theory deals with the realization of partial
functions F: X* — Y* by some finitely specifiable substrate. Before we
specify in more detail the forms (of which the Turing machine is one) of
substrate which have figured most prominently in automata theory, it is useful
to distinguish on-line machines from off-line machines. An on-line machine
is one that may be thought of as processing data in an interactive situation—in
processing a string it must yield a continual flow of outputs, processing each
symbol completely (albeit in a way dependent on prior inputs) before it reads
in the next symbol. This means that the corresponding function F: X* — Y*
must have the following special property:

1 For each nonempty string u of X* there exists a function F,: X* — Y*
such that for every nonempty v in X*

F(uv) = F(u) - Fu(v)

that is, the input string u causes the machine to put out the string F(u) and to
“change state” in such a way that it henceforth processes inputs according to
a function F, determined solely by F and u. We call a function sequential if it
satisfies property 1. If we define f(A) = F(A), whereas, for x % A, the function
JS(x) is the substring of F(x) produced in response to the last symbol of x, we
see that f: X* — Y* allows us to reconstruct F by the formula

FOaxs . .. x0) = f(AS(x)f(axz) - . . fOaXs . . . Xn)

if each xy, . . ., x, is in X. Conversely,

Saxe. .. x,) = len...:t,.-x(xn)

Let us define, for any u in X* the function L: X* — X* which simply
places u to the left of any string: L.(x) = ux. Then we see that f,, the function
corresponding to F,, has the simple form

2 fi2) = fLx)
and for a string uv we find, by changing f'to f,, and u to v in 2, that
Sulx) = ful(x) = fL.L(x)

It thus makes sense to speak of each function f, for u in X* (so that
S = /1) as a state of the sequential function F—with the input v serving to
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change state f, to state f.,, while the output corresponding to state f,, is
Ju(A) = fL(A) = f(u). Thus the evaluation of F may be captured by the
input-state-output sequence shown in Table 1.1.

Table 1.1
Input string: Sequence of symbols from X X1 Xz R Xn
State string: Sequence of functions f, [ fu Sz ceo Sozsee-za

JA) fx) flax) ... flaxe...xs)

i F(X[Xz P x,,)

Output string: Sequence of strings on Y*

Three portraits of a sequential machine are shown in Fig. 1.1. Since we are
in the habit of considering the first letter of a string to be the leftmost letter
(translators of this text into Hebrew, please take care!), it seems appropriate
(although perhaps a majority of authors use the opposite convention) to have
the input line drawn to the right of the box—so that the first input symbol is
the first to reach the box—and the output line drawn to the left of the box—so
that the last output symbol is the last to leave the box.

A sequential machine M is specified by three sets, the set X of inputs,
the set Y of outputs and the set Q of states together with a next-state function
6: @ X X — Q and an output function 8: Q — Y. If we have 8: Q — Y*, we
usually call M a generalized sequential machine.

We say that a sequential function F is finite-state if there are only ﬁmtely
many distinct functions of the form fL,.

Suppose that F has n states, and consider the effect of an input string of
n identical inputs, each, say, 0. Then we have a sequence of n + 1 states

fAs,ﬁ),fOO, LRI ’fO'I

(where 0~ stands for a string of n 0’s—i.e., the nth power of 0 with respect to
concatenation. We may write 0° for A). Since F has only n states, at least two
of the above, say fo: and fo: with i < j, must be equal, and thus f;. equals
fOiLO"‘I =f0.L0.-—,' =f0-.—(,‘—.‘). Thus

3 If F has only n states, we cannot enter a state of F for the first time after
applying n identical inputs.

4 Itis clear that if F is finite-state with n states, then every F,, for uin X*, is
finite-state with <n states.

— e

[

R g, S
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Read-only head

I E— XuJ l I Ix x’]xlx'lx"l l ] l;wop;;
Finite
control
circuitry
Queot (e [ [ e s e [T T [ [ [ ]~
Write-only head
(a)
Y ——— Q fe—————— X
(b)
NVolVz .. py XXXz . ..
(c)
Fig. 1.1
5 EXAMPLE

(i) Let F: {0, 1}* — {0, 1J* be the function, with state f: {0, 1}* — {0, 1},

e ) = 1 if an even number of x;’s are 1

Ve 0 ifnot

Then Fis sequential, and is finite-state with only two states f, = f and f;,
with the relations

S1 = ALy = folu
Jo = filh =ﬁ)Lo
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that is, we only change state (parity) if the input is one.

" 001 I\* .
(ii) Let G: — {0, 1}* be the function
0,101
the n lowest-order digits, with lowest-order digit
G (u. Uz s u,.) = first, of the binary expansion of the product of the
Ty Vg gy .0y Un .
binary numbers ;. . . u, and vz . . . ¥n.

Then G is clearly sequential. However, G is not finite-state—we shall
derive a contradiction from the assumption that G has a finite number n of
internal states.

Suppose G had to multiply 2 by itself fed to the machine as the string
(g).. : (g)” to yield 2%, that is, the string 0**1. This would mean that after
it had received its last nonzero input, G would have to print # more symbols,
all zeros save for the last. But this would require that, setting ¢ =fL(0)n,,

0/ 1

the state g(o), is different from each state g(o), for 0 < j < n, contradicting
0 0

3 and 4.
(iii) The function H: {0, 1}* — {0, 1}* with

Hxixy. .. Xp) = Xn. . . XoXa
is not sequential—for instance, H(01) does not begin with the string H(0).

Thus by restricting a machine to process a string one symbol at a time, or
to preserve information about prior symbols by the present state from a
finite set of possible states, we severely limit which functions from X* to Y*
may be realized.

We are thus led to consider off-line machines, which may be simply
defined as those functions which need not be sequential. We imagine that
the whole string may be presented to the machine before any computation
need take place. It is perhaps useful to think of the input string as read into
a data structure which the machine may operate upon over a period of time,
it usually being assumed that time is quantized, and that only a finite portion
of the data structure is affected during each unit of time. (This condition
will only be relaxed when we consider tesselations in Chapter 10.)

There is a sense, then, in which we may view an on-line computation as
treating an input string as distributed in time, whereas an off-line computation
treats the string as distributed in space.

A major question, then, is this: Can we formally define a class of
machines which can compute all partial functions F: X* — Y* which may
be obtained by a well-defined machine when we place a finiteness condition

e e et s 5 2

cm———

T —

cHAP. 1 AN OVERVIEW OF AUTOMATA THEORY 11
not upon its memory but only upon its access to that memory? Since the
notion of machine is informal in the last sentence, this amounts to finding a
precise mathematical definition to replace our intuitive notion of an effective
procedure for going (not always successfully, since the function may be
partial) from a string of X* to a string of Y*.

The first candidate for the notion of effectively computable function will
be that of a function computable by a Turing machine. As we develop other
theories of computation in this book, we shall see again and again that each
computable function we specify can also be computed by a Turing machine.
This will bolster our conviction that the notion of Turing-computable (and
its equivalents) is indeed an adequate formalization of our intuitive notion of
effectively computable. However, Turing machines often carry out their
computations most inefficiently, and an important task of the automata
theorist is to find more efficient automata to compute various classes of
functions.

Let us emphasize that we are now considering what effective compu-
tations are possible, without placing any bounds on the time or the storage
space required to complete the computation. In Chapter 7 we shall turn to
the more intricate questions of difficulty or complexity of computation:
“Among all the possible effective computations, which ones are practicable
when we impose certain restrictions on computation time or computer
growth?” ‘

At this stage, we had better crystallize the idea of an effective procedure.
There are certain computations for which there exist mechanical rules, or
algorithms, e.g., the euclidean algorithm for finding the greatest common
divisor of two integers. Certainly, any computation which can be carried out
by a digital computer is governed by purely mechanical rules. We say, then,
that there exists an effective procedure for carrying out these computations.
There are many cases in which we do not really know how to write a program
which would cause a given computer to carry out the desired computation,
but we do have a strong intuitive feeling that a suitable effective procedure
exists.

Abstract automata theory may be said to start with the simultaneous
publications of TURING [1936] and PosT [1936], who gave independent—and
equivalent—formulations of machines which could carry out any effective
procedure provided that they were adequately programmed. (Of course, such
a statement is informal—we Cannot prove that the formally defined class of
procedures implementable by Post or Turing machines will be the same as
our intuitive hazy notions of effective procedure. Suffice to say that this class
has been proved equivalent to many other formal classes, and that no one has
produced a procedure which is intuitively effective but cannot be translated
into a program for one of their machines.)

The basic idea of the Post and Turing formalisms is as follows (see Fig.
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1.2). The machine consists of (i) a control box in which may be placed a
finite program [i.e., which may be in one of a finite number of states]; (ii) a
potentially infinite tape, divided lengthwise into squares (i.e., depending on
our choice of mathematical fiction, we may consider the tape as comprising

Control box
contains
finite program

Tope scanner-
printer-mover

L]

[ [ [aToltTol [s[8]7] [ | Toee

Fig. 1.2. A Turing Machine

an infinite string of squares of which all but finitely many are blank, or as a
finite tape to the ends of which arbitrarily many new squares may be added
as required); and (iii) a device for scanning, or printing on, one square of the
tape at a time, and for moving along the tape, all under the command of the
control box.

We start the machine with a finite string from X* on the tape, and with a
program in the control box. The symbol scanned and the instruction pres-
ently being executed (that is, current state of the control box) uniquely
determine what new symbol shall be printed on the square, how the head
shall be moved, and what instruction is to be executed next (that is, what
shall be the next state of the control box). Thus the control box of a Turing
machine may be thought of as a finite-state sequential machine whose output
can be either a halt instruction, or a print-and-move instruction. If and when
the machine stops, the result of our computation, a new string from X*, may
be read off the tape.

We shall see that computation more efficient than that of ordinary
Turing machines can be obtained simply by allowing the Turing machine
to have several tapes—and these not necessarily one-dimensional—each acted
on by one or more heads which report back to a single control box which
coordinates their printing and moving on their respective tapes. We shall
see in Section 4.3 that any job that can be done by such a ‘“polycephalic”’
Turing machine can be simulated by an ordinary Turing machine—thus
reassuring ourselves of the breadth of the notion of a Turing-machine-
computable (henceforth: TM-computable) function (which, incidentally, we
shall prove in Chapter 6 to be coextensive with the notion of partial recursive
function introduced by the logicians in the 1930s as an alternative formaliza-
tion of the effectively computable functions). Further, we shall show in

CHAP. 1 AN OVERVIEW OF AUTOMATA THEORY 13

Chapter 7 that these polycephalic machines do indeed give us the expected
gain in efficiency. We shall also see that they not only have the great virtue
of being more efficient in that they take less time to complete a computation,
but also are easier to write programs for. With these “polycephalic” ma-
chines we shall, in fact, have a realistic model of computers—a virtue we do
not claim for the ordinary Turing machine, useful though it is in allowing us
to construct a theory of the computable. With these machines we are also
made aware that there is no reason to restrict automata theory to functions
of the form F: X* — Y*. With multidimensional tapes, our automata may
as well process planar or higher-dimensional configurations as the linear
strings of X*. However, we shall not pursue this line of study in this book,
save for a brief look at pattern recognition in Section 3.2, and in our study
of tessellations in Chapter 10.

McCuLrocH and Pirts [1943] introduced nets of formalized neurons,
and showed that such nets could carry out the control operations of a
Turing machine—providing, if you will, a formal “brain” for the formal
machine which could carry out any effective procedure (cf. Chapter 1 of
ARBIB [1964]). These nets comprised synchronized elements, each capable
of some boolean function, such as “and,” “or,” and “not.” It was his
knowledge of these networks that inspired voN NEUMANN in establishing
his logical design for digital computers with stored programs, which is of
basic importance to the present day. (In 1948, voN NEUMANN [1951] added
to the computational and logical questions of automata theory, the new
questions of construction and self-reproduction which we shall take up in
Chapter 10.)

In 1956 the collection ‘“Automata Studies” (SHANNON and MCCARTHY
[1956]) was published, and automata theory emerged as a relatively auton-
omous discipline. Besides the “infinite-state” Turing-Post machines, much
interest centered on finite-state sequential machines, which first arose not in
the abstract form of our above discussion, but in connection with the input-
output behavior of a McCulloch-Pitts net or an “isolated” Turing machine
control box.

TURING’s paper [1936] contains a charming “pseudopsychological”
account of why we might expect any algorithm to be implementable by a
suitable 4-machine (his name for Turing machines). We reproduce excerpts
from this below. Bear in mind that when Turing wrote this, ‘“computer”
meant a human who carried out computations!

All arguments which can be given are bound to be, fundamentally, appeals
to intuition [since the notion of effective procedure is intuitive] and for this
reason, rather unsatisfactory mathematically . . . . Computing is normally
done by writing certain symbols on paper. We may suppose this paper is

divided into squares like a child’s arithmetic book. In elementary arithmetic,
the 2-dimensional character of the paper is sometimes used. But such a use is
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always avoidable, and I think that it will be agreed that the 2-dimensional
character of paper is no essential of computation. I assume then that the com-
putation is carried out on one-dimensional paper, i.e., on a tape divided into
squares. I shall also suppose that the number of symbols which may be printed
is finite. If we were to allow an infinity of symbols, then there would be symbols
differing to an arbitrarily small extent. . . . Itisalways possible to use sequences
of symbols in the place of single symbols. . . . The difference from our point
of view between the single and compound symbols is that the compound sym-
bols, if they are too lengthy, cannot be observed at one glance. . . . We cannot
tell at one glance whether 9999999999 and 99999999999 are the same.

The behavior of the computer at any moment is determined by the symbols
which he is observing, and his *‘state of mind” at that moment. We may
suppose that there is a bound B to the number of symbols on squares which the
computer can observe at any moment. If he wishes to use more, he must use
successive observations. We will also suppose that the number of states of
mind which need to be taken into account is finite. The reasons for this are
of the same character as those which restrict the number of symbols . . . . Let
us imagine that the operations performed by the computer are split up into
“simple operations,” which are so elementary that it is not easy to imagine
them further divided. Every such operation consists of some change of the
physical system consisting of the computer and his tape. We know the state
of the system if we know the sequence of symbols on the tape, which of those
are observed by the computer (possibly with a special order), and the state of
mind of the computer. We may suppose that in a simple operation not more
than one symbol is altered, [and] . . . without loss of generality assume that
the squares whose symbols are changed are always *‘observed” squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares must
be immediately recognizable by the computer . . . . Letussay that each of the
new observed squares is within L squares of an immediately previously observed
square.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within L squares
of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state
of mind . . . . The operation actually performed is determined . . . by the
state of mind of the computer and the observed symbols. In particular they
determine the state of mind of the computer after the operation is carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an [internal state] of the
machine. The machine scans B squares corresponding to the B squares ob-
served by the computer. In any move the machine can change a symbol on a
scanned square, or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned squares.
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The move which is done, and the succeeding [internal state] are determined by
tl}e scanned symbol and the internal state. The machines just described do not
differ very essentially from [Turing machines] . . . [and so, a Turing machine]
can be constructed to compute . . . the sequence computed by the computer.

We associate with a Turing machine Z a function Fj: X* — X* by
defining F(u) to be the expression printed on the tape when Z stops, if
started in a specified initial state, say gy, scanning the leftmost letter of the
string u—if Z never stops after being so started, F(u) is to be left undefined.

Note that F; may be always defined, sometimes defined, or never defined.
Trivial examples of the three cases are, respectively, a machine which halts
under all circumstances; a machine which halts if it scans a 1, but moves
right if it scans any other symbol; and the machine which, no matter what
state it is in and no matter what it sees, always moves right.}

If we think of Turing machines as actual physical devices, it is clear that
the input symbols could be configurations of holes on punched tape, patterns
of magnetization or handwritten characters, or the like, whereas the states
could be that of a clockwork, of a piece of electronic apparatus, or of an
ingenious hydraulic device. Such details are irrelevant to our study, and so
if there are m inputs in X, we shall feel free to refer to them as x,, xy, . . .,
Xxm—1 Without feeling impelled to provide further specification; and if there
are n states, we shall similarly find it useful to lable them g, gy, . . ., gu_y. I
mention this because I want it to be clear that automata theory deals with
abstract descriptions of machines, not their implementations. For each such
abstract description there are many implementations—depending, e.g., on
whether we interpret x; as a 0 or a 1, as a pattern of magnetization or a
configuration of holes in a punched tape—but it should be clear that, from
the information-processing point of view, there is a very real sense in which
all these machines may be considered the same machine.

. Since each Turing machine is described by a finite list of instructions, it
is easy to show that we may effectively enumerate the Turing machines

2,25, 27,,...

so that, given n we may effectively find Z,, and given the list of instructions
for Z, we may effectively find the n for which Z = Z,.

This implies that we can effectively enumerate all TM-computable (that
is, Turing machine computable) functions as

S fo foy - -

simply by setting f, = Fz,. Such effective enumeration lies at the heart of

) { This is thg John l}irch machine. Teachers at more conservative campuses may replace
this example with a suitably insidious device which always moves left.



16 AN OVERVIEW OF AUTOMATA THEORY CHAP. 1

much of our study of the computable in Chapter 4. For example, if we say
that £, is total if f.(u) is defined for all 1, we might ask: Is there an effective
procedure for telling whether or not f, is total: e.g., does there exist a total
TM-computable function / such that £, is total if and only if n = h(n) for
some m (identifying a string with a suitable number that encodes it)? The
answer is “NO," for if such an h existed, we could define f by

S = frm(n) + 1

Then f would be total recursive, and so f = f,m) for some m.

Then fym(m) = fuem(m) + 1, a contradiction!

This is just one example of the many things we can prove to be undecid-
able by any eflective procedure. To say that we cannot effectively tell that
[ is total is just the same as saying that we cannot tell effectively whether
Z, will stop computing no matter what tape it is started on. We may thus
say that “the halting problem for Turing machines is unsolvable.”

A most interesting result of Turing's paper is that there is a universal
Turing machine, i.e., one which, when given a coded description of Z, on its
tape, as well as the data x, will then proceed to compute f,(x), if it is defined.
This is obvious if we accept that every effective computation may be executed
by a Turing machine: For given n and x we find Z, effectively, and then use
it to compute f,.(x), and so there should exist a Turing machine to implement
the cffective procedure of going from the pair (n, x) to the value fi(x). A
proper proof (Scction 4.5) takes somewhat longer! The universal Turing
machine is the intellectual forebear of today's stored-program digital com-
puter.

1.4 FORMAL LANGUAGES

We have spoken of automata as finitely specifiable substrates for partial
functions F: X* — Y*. Let us now see ways in which functions may define
sets, thus learning to associate classes of sets with classes of automata. We
follow the terminology of Scott [1967].

We shall say that a subset S of X* is decidable by F: X* — Y* if there
exist two distinct elements ¢ and b of Y* such that F(u) = a if v is in §,
whereas F(u) = b if u is not in S. In other words, if we can compute the
function F, we have a straightforward method for deciding whether or not u
belongs to S.

We shall say that a subset S of X* is acceptable by F: X* — Y* if there
exists an element a of Y* such that F(u) = a if v is in S. Note that if Fis a
total function (i.e., defined for all v in X*), then we may use F to decide
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whether or not any u belongs to S. Suppose, however, I is only partially
defined, and we set some automaton going to decide u. Then if after a period
of time the automaton has not halted, we may not be sure whether it will
never halt, so that u is not in S, or whether it will eventually halt, at which
time we would know that u belonged to S iff{ the output of the automaton
were a. We have already mentioned that there is no effective procedure to tell
of a Turing machine whether or not it will halt.

We shall say that a subset S of Y*is generable by F: X* — Y* just in case
S is the range of F, that is, S = F(X*) = {F(u)|u is in X*}.

We shall usually speak of subsets of X* or Y* as lunguages. Thinking of
X, say, as the vocabulary, we think of the strings of X* as the possible utter-
ances in the vocabulary, with the strings of the given subset as being, in some
sense, grammatical or well-formed. We shall associate different classes of
languages with different classes of automata and explore the formal properties
of these associations, leaving it for texts on linguistics to assess what relevance
such studies have to the structure of the rcal languages of human discourse.

We may note that if we consider functions f: X* — Y corresponding to
sequential functions F: X* — Y* which are finite-state, then we get the same
class of languages whether we use the functions as deciders or acceptors. We
speak of languages in this class as finite-state languages. The reader may wish
to prove, after he has read Section 3.3, that they are the same class of lan-
guages as those generated by finite-state (generalized) sequential functions
F: Z* — X*.

Now, we have already suggested that the Turing-computable functions
F: X* > X* correspond to the intuitive notion of effectively computable
functions. Thus the classes of sets which are decided, accepted, or generated
by them should include the classes of sets decided, accepted, or generated by
other finitely specified automata. (I make the proviso “finitely specified,”
since the mathematical automata theorist is under no compulsion to restrict
his attentions to this case. Once he understands this primary focus of au-
tomata theory, he may then find it worthwhile to seek nonfinite generaliza-
tions.)

We shall see in Chapter 4 that the class of functions decided by Turing-
computable functions—the recursive sets—is a proper subclass of the class
accepted by Turing-computable functions—the recursively enumerable sets.
However, the sets generable by Turing machines are precisely the recursively
enumerable sets.

One of the centers of study in the theory of formal languages is that of
closure properties. We may ask whether or not a class is closed under comple-

t “iff’ is the standard abbreviation for ‘if and only if* and will be used throughout.

A}
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mentation—i.e., whether, for every subset R of X* which belongs to the class,
it is also true that the complement X* — R belongs to the class. It is clear
that every class of decidable sets is closed under complementation—we just
interchange the role of a and b in the definition of the set. Similarly, one may
prove that any reasonable class of generable sets is closed under the formation
of finite unions—we just use the first letter of the input to switch us to the
computation for generating an element of the appropriate term of the union.

We shall see in Section 3.3 not only that the finite-state languages are
closed under union, set product (which replaces the sets E and F by the set
E - F of all strings obtainable as a string of E followed by a string of F), and
iteration (the operation that replaces a set E by the set E* of all strings
obtainable by concatenating a nonnegative number of strings from E)—as
well as complementation and intersection—but also that these first three
operations serve to characterize the finite-state languages. In fact, a set is a
finite-state language iff it can be built up from finite sets, using a finite number
of applications of U, -, and * operations. This will be our first taste of
machine-independent characterizations of a class of languages which may also
be characterised by a class of machines.

The beginnings of a hierarchy of classes of machines—with lower end
defined by finite-state sequential machines, and upper end defined by the
Turing machines—defines the beginning of a hierarchy of classes of languages
—with lower end defined by finite-state languages, and upper end defined by
the recursively enumerable sets, with the recursive sets falling properly in
between. A major aim is to fill out in more and more detail the structure of
these two hierarchies.

We shall see in Chapter 5 that languages can be defined in a machine-
independent way by formalized “grammars,” and shall then be led to study
two natural classes of languages, the so-called context-sensitive and context-
free languages. We shall find that the finite-state languages are a proper
subclass of the context-free languages, which are similarly related to the
context-sensitive languages, which in turn form a proper subclass of the
recursive sets. But this is not all. We shall see that we may associate with
these languages two classes of automata—each obtained by imposing natural
restrictions on Turing machines—the push-down automata with the context-
free languages, and the linear-bounded automata with the context-sensitive
languages. And so it goes on, the literature now abounding with new classes
of automata, intermediate between the finite automata (i.e., finite-state
sequential machines) and the Turing machines. It is too early to provide an
overview of all these variants, and to judge which are worthy of continued
study and which mutations are nonviable—but the material presented in

Part 11 of this book should more than suffice as background for the reader
who wishes to approach this literature and judge for himself.
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1.5 HIERARCHIES AND DIVERSITIES

A hierarchical classification of machines does not arise merely in con-
nection with the study of formal languages.

We may impose subhierarchies on the finite automata (i.e., finite-state
sequential machines) by asking how many components of a given kind are
required in the construction of a given machine, as we do in Section 2.2,
where the components are boolean switching elements with a fixed number
of input lines, or in Section 8.6, where the components are finite automata
whose inputs all serve to permute the set of states. These are studies which lay
the foundations for really practical analyses of cost of realization of abstract
descriptions of automata, at the same time as they give us insight into the
way the structure of the finitely specifiable substrate must vary as we alter the
nature of the input-output function it is to embody.

We may define subhierarchies of the Turing-computable functions in
terms of inductive definitions of classes of functions, often far removed from
machine definitions—in the manner of recursive function theory—and yet,
as we shall see in Chapter 6, the subclasses so defined often correspond to
subclasses of the Turing machines, and therein lies their interest to automata
theorists.

Or we may seek to restrict our machines by limiting the time or tape
space they may use in completing a computation, and then ask where in the
complexity scale so induced lie the solutions of various problems. For in-
stance, in Chapter 7 we shall give a formal proof of the old saw that “two
heads are better than one” by proving that a Turing machine with two heads
on one tape can recognize whether or not a string is a palindrome (i.e., reads
the same backward and forward: “ABLE WAS I ERE I SAW ELBA,” and
the like) in a time that only increases linearly with the length of the string,
while the time taken by a one-head machine will, for nearly all strings, go up
with the square of the length of the string. .

The reader should begin to understand why automata theory has so many
different devices. Automata may be viewed in many different ways, and each
way gives rise to a different set of questions. No matter how well we may
evolve a unified theory of automata, these differences will remain, and the
interrelations of these differing approaches will provide fertile fields for study.
Just as much of the excitement of automata theory is generated by the attempt
to capture diffuse aspects of reality in a convenient formalization, so there is
a richness of insight to be gained in cross-formalization studies, in which we
try to understand the mismatches between formalizations, and why advan-
tages of a formalization in one context become disadvantages in another.
Let us close, then, by listing some of the different ways in which we may
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consider automata, whether or not we have already discussed them in this
chapter. We may consider automata as:

Constructs: Given a collection of components, we may ask questions of
synthesis—can a given behavior be realized by an interconnection of these
components, and if so, how?—and of analysis—what is the behavior of a
given interconnection of the components?

Programs: Given a collection of input and output commands, data
manipulation, and branch-on-test instructions, we may study the computa-
tions which can be carried out by executing a program written in terms of
these commands.

Functions: We may view automata as either on-line or off-line devices
for transforming input strings in X* (not always successfully) to output
strings in Y*, thus yielding a (possibly partial) function F: X* — Y*.

Languages: An automaton may be used for deciding whether or not
input strings belong to a language, or accepting those strings which belong
to a language, or generating a language as the set of its output strings. With
languages, as with functions, we shall be led by our machine-theoretic
investigations to study machine-independent questions, such as closure prop-
erties, which will lead us to other characterizations.

Logics: We may study devices for generating proofs of theorems from a
given set of axioms, using given rules of inference; or a device for deciding
whether or not a string is a theorem in a given formal system. This study
may be formally like that of languages, but with the interpretation *“This is
a theorem” replacing the interpretation “This is grammatical.”

Dynamic systems: Here the primary emphasis is on the state of the
system, and the ways in which inputs may be chosen to control this state—
outputs thus being rclegated to a secondary role. This is the approach which
links automata theory to mathematical system thcory.

Algebraic systems: Here we emphasize the way in which, e.g., finite
automata may be considered as a generalization of semigroups, thus enabling
us to ask new questions about algebra, yet at the same time applying alge-
braic techniques to questions about automata. We can also study generaliza-
tions of automata suggested by generalizations of the algebraic concepts we

apply.

We study the interplay between machine, language, and algebraic
characterizations. We see how concepts change as we go from deterministic
to possibilistic (nondeterministic yet not probabilistic) to probabilistic modes
of operation. We extend our study of computation to deal with problems of
construction. We impose hierarchies upon our constructs by imposing
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constraints of time, space, or complexity. And we.ask how our formaliza-
tions compare with the complexities of real information-processors. The
result is a growing, open-ended, mathematically sophisticated yet intuitively
appealing abstract theory of automata.



