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1 Introduction

If you wanted to control a camera or a robot or a scientific instrument from a PC, it would be
natural to think of using Linux so that you could take advantage of the development environment,
X-windows, and all the networking support. But, Linux cannot reliably run these kinds of hard
real-time applications. A simple experiment will illustrate the problem. Take a speaker and
hook it up to one of the pins from the parallel port. Then run a program that toggles the
pin. If your program is the only one running, the speaker will produce a nice somewhat steady
tone. Not completely steady, but not bad. When Linux updates the file system every couple
of seconds, you might notice a small change in tone. If you move the mouse over a couple of
windows the tone becomes irregular. If you start netscape in one of the windows, you will hear
intervals of silence as your program waits for higher priority processes to run.

The problem is that Linux, like most general purpose operating systems, is designed to
optimize average performance and to try to give every process a fair share of compute time.
This is great for general purpose computing, but for real-time programming precise timing and
predictable performance is more important than average performance. For example, if a camera
fills a buffer every millisecond, then a momentary delay in the process reading that buffer may
cause data loss. If a stepper motor in a lithography machine must be turned on and off in precise
intervals in order to minimize vibration and to move a wafer into position at the correct time
— a momentary delay may cause an unrecoverable failure. And consider what might happen if
the task that causes an emergency shutdown of a chemistry experiment must wait to run until
Netscape redraws the window.

It turns out that redesigning Linux to provide guaranteed performance would take an enor-
mous amount of work. And taking on such a job would defeat our original purpose. Instead of
having an off the shelf general purpose OS, we would have a custom made special purpose OS
that would not be riding the wave of the main Linux development effort. So what we did was slip
a small, simple, real-time operating system underneath Linux. Linux becomes a task that runs
only when there is no real-time task to run and we pre-empt Linux whenever a real-time task
needs the processor. The changes needed in Linux itself are pretty minimal. Linux is mostly



unaware of the real-time operating system as it goes about its business of running processes,
catching interrupts, and controlling devices. But real-time tasks can run to a quite high level of
precision. In our test P120 system, we can schedule tasks to run within a precision of about 20
microseconds.

Real-time Linux is a research project with two goals. First, we want a practical non-
proprietary tool we can use to control scientific instruments and robots. Our other goal is
to use RT-Linux for research in real and non-real-time OS design. We'd like to be able to learn
something about how to make operating systems efficient and reliable. For example: even a
non-real-time operating system should be able to determine whether it can guarantee timing
needed for its I/O devices. And we’re interested in what types of scheduling disciplines actually
turn out to be most useful for real-time applications. Following this dual purpose, in this paper
we will discuss both how to use RT-Linux and how it works.

2 Using RT-Linux 2.0.RT.1

Let us consider an example. Suppose we want to write an application that polls a device for
data in real-time and stores this data in a file. The main design philosophy behind RT-Linux is
the following:

Real-time programs should be split into small and simple parts with hard real-time
constraints, and the larger parts that do more sophisticated processing

Following this principle, we split our application into two parts. The hard-real-time part
will execute as a real-time task and will copy data from the device into a special I/O interface
called real-time fifo. The main part of the program will execute as an ordinary Linux process.
This part will read data from the other end of the real-time fifo and will then display and store
the data in a file.

The real time component will be written as a kernel module. Linux allows us to compile
and load kernel modules without rebooting the system. Code for a module always starts with
a define of MODULE and an include of the module.h file. After that, we include the real-time
header files rt_sched.h and rt_fifo.h and declare a RT_TASK structure .

##define MODULE
#include <linux/module.h>

/* always needed for real-time tasks */
#include <linux/rt_sched.h>

#include <linux/rt_fifo.h>

RT_TASK mytask;



The real-time task structure will contain pointers to code, data, and scheduling information for
the this task. The task structure is defined in the first include file. Currently, RT-Linux has
only one, pretty simple, scheduler. In the future the schedulers will also be loadable modules.
Currently, the only way for real-time tasks to communicate with Linux processes is through
special queues called real-time fifos. Real-time fifos have been designed so that the real-time
task can never be blocked when it reads or writes data. Figure 1) illustrates real-time fifos.
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Figure 1: Data Collection Application

The example program will simply loop, reading data from the device, writing the data on a
RT-fifo, and waiting for a fixed amount of time.

/* this is the main program */
void mainloop(int fifodesc) {
int data;

/* in this loop we obtain data from the device and put it */
/* into the FIFQO number 1 */
while (1) {
data = get_data();
rt_fifo_put(fifodesc, (char *) &data, sizeof(data));
/* give up the CPU till the next period */
rt_task_wait();



All modules must contain an initialization routine. The initialization routine for the example
real-time task will: record the current time, initialize the real-time task structure, and put
the task on the periodic schedule. The rt_task_init routine initializes the task structure and
arranges for an argument to be passed to the task. In this case, the argument is a fixed descriptor
for a real-time fifo. The rt_make_periodic routine puts the new task on the periodic scheduling
queue. Periodic scheduling means that the task is scheduled to run every so many time units.
The alternative is to make the task run only when an interrupt causes it to become active.

/* This function is needed in any module. It will be invoked when
/* the module is loaded. */
int init_module(void)

{
#define RTFIFODESC 1
RTIME now = rt_get_time(); /* get the current time */
/* ‘rt_task_init’ associates a function with the */
/* RT_TASK structure */
/* and sets several execution parameters: */
/* priority level = 4, stack size = 3000 bytes */
/* pass 1 to ‘mainloop’ as an argument */
rt_task_init(&mytask, mainloop, RTFIFODESC, 3000, 4);
/* Mark ‘mytask’ as periodic. */
/* It could be interrupt-driven as well */
/* mytask will have period of 25000 time units  */
/* the first run is in 1000 time units from now */
rt_task_make_periodic (&mytask, now + 1000, 25000);
return O;

}

Linux also requires that any module have a cleanup routine. For a real-time task, we want
to make sure that a dead task is no longer scheduled.

/* cleanup routine. It is invoked when the module is unloaded. */
void cleanup_module(void)

{



/* kill the real-time task */
rt_task_delete(&mytask) ;

That’s the end of the module. We also need a program that runs as an ordinary Linux
process. In this example, the process will just read data from the fifo and write copy the data
to stdout.

#include <rt_fifo.h>
#include <stdio.h>

##define RTFIFODESC 1
#define BUFSIZE 10
int buf [BUFSIZE];

int main()

{
int i;
int n;
/* create FIFO number 1 with size of 1000 bytes */
rt_fifo_create(1, 1000);
for (n=0; n < 100; n++) {
/* read the data from the FIFO and print it */
rt_fifo_read(1, (char *) buf, BUFSIZE * sizeof (int));
for (i = 0; i < BUFSIZE; i++) {
printf("%d ", buf[il);
}
printf ("\n");
}
/* destroy FIFO number 1 */
rt_fifo_destroy(1);
return O;
}

The main program might as well display data on the screen, send it over network, etc. All
these activities are assumed to be non-real-time. The FIFO size must be big enough to avoid



overflows. Overflows can be detected, and another FIFO can be used to inform the main program
about them.

3 Why Linux can’t do real-time and why simple fixes don’t

Although Linux has system calls for suspending a process for a given time interval, it does not
guarantee that the process will be resumed as soon as this interval has passed. Depending on
system load, the process might be scheduled more than a second later. Furthermore, a user
process can be preempted at an unpredictable moment and forced to wait for its share of the
CPU time. Assigning the highest priorities to critical tasks does not help, partly because of the
Linux “fair” time-sharing scheduling algorithm. This algorithm tries to make sure that every
user program gets its fair share of computer time. Of course, if we have a real-time task, we want
it to get the CPU whenever it needs it, no matter how unfair that may be. Linux virtual memory
also contributes to unpredictability. Pages belonging to any user process can be swapped out to
disk at any time. Bringing the requested page back to RAM takes an unpredictable amount of
time in Linux.

Some of these problems are easily, or semi-easily, fixed. It’s possible to create a new class of
special Linux processes that are more real-time. We could change the scheduling algorithm so
that real-time processes are scheduled round-robin or periodically. We could lock a real-time
process into memory so that its pages will never be swapped out. In fact, both of these ideas are
part of the POSIX.1b-1993 specification which defines standards for “real-time” processes. And
POSIX.1b-1993 is being incorporated into Linux. In newer versions of Linux, system calls are
already provided for locking user pages in memory, changing the scheduler policy to a priority-
based one, and even for a more predictable handling of signals.

POSIX.1b-1993 does not solve all our problems. It’s not really intended to solve the kinds
of problems we discussed at the beginning of this article. The standard is aimed at so-called
soft real-time programs. A program that displays a video in a window is a perfect example of
a soft real-time task. We want this task to run quickly and quite often in order to get a good
quality display, but a few milliseconds here or there won’t make much difference. For hard-real
time problems, the POSIX standard has several drawbacks:

e Linux processes are heavyweight processes that are associated with significant overhead
from process switching. Although Linux is relatively fast in switching processes, it can
take several hundred microseconds on a fast machine. This would make it impossible to
schedule a task to poll a sensor every 200 microseconds.

e Linux follows the standard UNIX technique of making kernel processes non-preemptive.
That is, when a process is making a system call (and running in kernel mode) it cannot
be forced to give up the processor to another task, no matter how high the priority of the
other task. For people who write operating systems, this is wonderful because it makes



a lot of very complicated synchronization problems disappear. For people who want to
run real-time programs, however, it is not so wonderful that important processes cannot
get scheduled while the kernel works on behalf of even the least important process. in
kernel mode, it cannot be rescheduled. For example, if Netscape calls fork, the fork will
complete before any other process can run.

e Linux disables interrupts in critical sections of kernel code. This means a real-time in-
terrupt may be delayed until the current process, no matter how low priority, finishes its
critical section. Consider this piece of code

linel: temp = ghead;
line2: ghead = temp->next;

Suppose that before the kernel gets to line 1, ghead contains the address of a data structure
that is the only data structure on the queue and that ghead->next contains 0. Now
suppose the kernel routine finishes line 1 and computes the value temp->next (which is
0) and then is interrupted by an interrupt that causes a new element to be added the the
queue. When the interrupt routine finishes ghead->next will not be equal to 0 any more,
but when the kernel routine continues it will assign the ( value to ghead and so will lose
the new element. To prevent these types of errors, Linux kernel makes extensive use of
the cli command to clear (disable) interrupts during these critical sections. The kernel
routine in this example would disable interrupts before it began changing the queue and
re-enable interrupts only when the operation was complete. This means that sometimes
interrupts would be delayed. It’s hard to calculate the worst possible delay that can be
caused by a critical section. You’d have to carefully examine the code for every driver and
much of the rest of the OS as well to even make a good estimate. We've measured delays
of as long as 1/2 millisecond. Consider what such a delay will mean to our camera routine.

Changing the Linux kernel to be a preemptable real-time kernel with low interrupt processing
latency would require substantial rewriting of the Linux kernel code, almost writing a new one.
Real-Time Linux uses a simpler and more efficient solution.

4 How it works

The basic idea is to make Linux run under the control of a real-time kernel (See Figure 2). When
there is real-time work to be done, the RT operating system runs one of its tasks. When there
is no real-time work to be done, the real-time kernel schedules Linux to run. So Linux is the
lowest priority task of the RT-kernel.

The problem with Linux disabling interrupts is solved by simulating the Linux interrupt-
related routines in the real-time kernel. For example, whenever Linux kernel invokes ¢1i() -
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Figure 2: Real-Time Linux

routine that is supposed to disable interrupts, a software interrupt flag is reset instead. All
interrupts get caught by the RT-kernel and passed to the Linux kernel according to the state
of this flag and the interrupt mask. Therefore, the interrupts are always available for the RT-
kernel, while still allowing Linux to “disable” them. In the example above, the Linux kernel
routine would call c¢1i () and this would clear the soft interrupt flag. If an interrupt occurred,
the real-time executive would catch it and decide what to do. If the interrupt caused a real-
time task to be run, the executive would save the state of Linux and start the real-time task
immediately. If the interrupt just needed to be passed along to Linux, the real-time executive
would set a flag showing a pending interrupt and then resume Linux execution without running
the Linux interrupt handler. When Linux re-enables interrupts, the real-time executive will
process all pending interrupts and cause the corresponding Linux handlers to execute.

The real-time kernel is itself non-preemptable, but since its routines are very small and fast,
this does not cause big delays. Testing on Pentium 120 shows the maximum scheduling delay
to be less than 20 us.

Real-time tasks run at the kernel privilege level in order to provide direct access to the
computer hardware. They have fixed allocations of memory for code and data — because
otherwise we would have to allow for unpredictable delays when a task requested new memory
or paged in a code page. Real-time tasks cannot use Linux system calls or directly call routines
or access ordinary data structures in the Linux kernel, because this would introduce possibilities
of inconsistencies. In our example above, the kernel routine changing the queue would invoke
c1i but this would not prevent a real-time task from starting. So we cannot allow the real-time



task to directly access the queue. We do, however, need a way for real-time tasks to exchange
data with the kernel and with user tasks. In a data collection application, for example, we might
need to send the data collected by an RT-task over the network, or write it locally in a file, while
displaying it on the screen.

Real-Time FIFOs are used to pass information between real-time processes and ordinary
Linux processes. RT-FIFOs are, like real-time tasks, never paged out. This eliminates the
problem of unpredictable delays due to paging. And real-time fifos are designed to never block
the real-time task.

Finally, there is the question of how the real-time kernel keeps track of the real-time. When
implementing schedulers for real-time systems, there is usually a tradeoff between the rate
of clock interrupts and task release jitter. Typically, sleeping tasks are resumed during the
execution of the periodic clock interrupt handler. A comparatively low clock interrupt rate does
not impose much overhead, but at the same time causes tasks to be resumed either prematurely
or too late. In real-time Linux this problem is obviated by using a high-granularity one-shot
timer in addition to standard periodic clock interrupts. Tasks are resumed in the timer interrupt
handler precisely when needed.

5 What’s next

The current version of RT-Linux is available by anonymous ftp from luz.cs.nmt.edu. Informa-
tion on RT-Linux can be found on the web at http://luz.cs.nmt.edu/"rtlinux. The system
is in active development, so it’s not at production level of stability, but its pretty reliable. We
are developing some applications as well and these will also be on the web site. Also we are
asking for people who use the system to make their applications available on the website as well.



