
Folding a tree into a map

Victor Yodaiken

September 14, 2015

Abstract

Analysis of the retrieval architecture of the highly influential UNIX
file system ([1][2]) provides insight into design methods, constraints,
and possible alternatives. The basic architecture can be understood
in terms of function composition and recursion by anyone with some
mathematical maturity. Expertise in operating system coding or in
any specialized “formal method” is not required.

1 Basics

[3]

The retrieval (read-only) operation of com-
puter file system can be represented by a map:

File : Identifiers→ Contents.

A disk drive corresponds to a much simpler
map

Disk : BlockNumbers→ Blocks

where blocks are just fixed length sequences
of “bytes” (8 adjacent binary digits). Until recently, file systems had to
be designed around the problem of building a reasonably sophisticated map
of the first kind from the simple operation of second map. The UNIX file
system ([1][2]) supports variable sized files from small text files to videos and
databases and also organizes files into a tree structure so that file names
describe paths through the tree. The map looks like

1

F : Paths(X)→ Contents.

The set Paths(X) is the set of finite sequences of non-null strings over some
alphabet X. Implementations use special characters as separators — e.g.
/a/b/c where / but fundamentally paths are sequences of strings1.

The UNIX designers split the problem of building this system on top of a
disk drive into two conceptually distinct problems. First they looked at how
to get past the fixed size:

α : Indexes→ Contents

where Indexes is a set of numbers and Contents includes, at least, all se-
quences of bytes within the limits of the file system. The second step is to
embed the tree into this first system:

β : Paths(X)→ Indexes

The file system map is then given by: F (p) = α(β(p)). The map β relies on
a clever technique where Contents is the union of the set of byte sequences
(ordinary files) and the set of maps Strings(X)→ Indexes (directories). If
α(i) is a directory, then α(i)(x) applies the map that is the value of α(i) to
the argument x.

A recursive descent from an initial index processes strings starting on the
left. Let Null denote the null path (0 strings). If p is a path and x is a
non-null string, then xp is the path obtained by appending x to p on the left.
Then every finite path is either the null path or of the form xp.

N (i,Null) = i
N (i, xp) = N (α(i)(x), p)

At each step, N resolves the leftmost string in the path – assuming that α(i)
is a directory that is defined on that string.

To define β then we just need to pick some root ∈ Indexes and then:

β(p) = N (root, p)

1In practice, the length of paths and lengths of strings in the path will be constrained
by some bound, but we don’t have to worry about that now either.

2

2 Consistency and extending the model

One useful property of N is that it is guaranteed to terminate:

If p is n elements long N (i, p) terminates in at most n+ 1 steps (1)

This property, assures implementors that their program will not cycle in-
finitely trying to reduce a path to an index. A second property implicit in the
definition of N is that if a path names a file, every prefix of that path names
a directory. Let px be the path obtained by appending x ∈ Strings(X) to
p ∈ Paths(X) on the right.

If F (px) is defined then F (p) is a directory (2)

There are a number of additional properties that α and root need to satisfy to
make this a reasonable file system. The most important are the “no orphans”
and “no dangling references” properties.

If α(i) is defined, there is some path p s.t. N (root, p) = i (3)

F (px) is defined if and only if F (p)(x) is defined. (4)

There’s another useful pair of properties for two special strings ′′.′′ (self)
and ′′..′′ (parent).

if F (p) is a directory, then F (p)(′′.′′) = N (root, p) (5)

if F (px) is a directory, then F (px)(′′..′′) = N (root, p) (6)

F (root)(′′..′′) = root (7)

Do we want to permit aliases - distinct paths that don’t contain any “..”
or “.”strings but that name the same file? Say a path is “dot free” if it doesn’t
contain either “..” or “.” as elements (other dots are ok). We can require
that for any two dot-free paths p, q: if N (root, p) = N (root, q) then p = q.
The most important aspect of a property like this is the elimination of loops.
Consider a program that finds all the files that are rooted by a particular
folder. Let list(F (p)) = ∅ if p is not defined or is not a directory and the set
of all strings x /∈ {“.′′,′′ ..′′} where F (p)(x) is defined and a directory. Then:

find(p) =

∅ if F (p) is not defined

{p} if F (p) is a regular file

or F (p) is the empty directory

{p} ∪ (∪x∈list(F (p))find(px)) otherwise

3

The question is whether find is guaranteed to terminate. Even if F describes
a file system with a finite number of files (always the case in practice), loops
would cause find to build longer and longer paths without ever hitting one
of the first two terminating cases. If there are at most n files in the system,
then a path of more than n elements must visit the same directory twice
— implying there is an alias. So prohibiting aliases is sufficient to make
find and many other related algorithms work properly. The original UNIX
file system did not prohibit all aliases, but had a weaker constraint that is
enough to assure that find terminates. Define links as follows:

links(i, j) =

1 if α(i)is a directory

and there is some x ∈ list(α(i)) s. t. α(i)(x) = j

0 otherwise

The requirement is that Σj∈Indexeslinks(j, i) < 2 for all i where α(i) is a
directory plus a requirement that links(j, root) = 1 only if j = root. That is,
at most one directory j links to directory i and none link to the root directory.
This constraint is a consequence of the consistency properties above. Suppose
that j1 6= j2 violated the constraint - so that α(j1)(x) = α(j2)(y) = i and
α(i) is a directory. Because of property 4 there must be p and q so that
N (root, p) = j1 and N (root, q) = j2. But then F (px)(′′.′′) = F (qy)(′′.′′) = i
and α(i)(x) = F (px)(′′..′′) = F (qy)(′′..′′) so j1 = j2 which contradicts the
premise. If links(i, root) then the same reasoning tells us i = root by 7.

In later versions of UNIX things became more complex because of so
called “soft links” (symbolic links). To include soft-links in the current anal-
ysis, add a third file type to ordinary files and directories: a soft link type
where the contents is just a path. Then modify N as follows:

N (i, xp) =

{
N ((α(i))(x), p) if α(i) is a directory map

N (root, Concatenate(α(i), xp)) if α(i) is a soft link

Sadly, this new version of N lacks property 1. The normal method for fixing
that is to count the number of soft-links visited along a path.

N (i, p) = N ′(i, p, 1)

N ′(i, xp, n) =

{
N ′((α(i))(x), p, n) if α(i) is a directory map

N ′(Concatenate(α(i), xp), n− 1) if α(i) is a soft link and n > 0

4

Soft links, however, introduce loops into the tree and N might visit the same
directory twice.

We have to use a similar trick to make find safe with some k > 0 as the
number of acceptable soft links to traverse.

Extensions such as mounted file systems and union file systems are easy
to add to this model.

3 Coding

A disk block can be considered to be just a fixed length sequence of “bytes”
(8 binary digits representing numbers in the set {0 . . . 255}). Ordinary files
can be specified on the disk by a number n indicating how many bytes are in
the file and a sequence of disk block numbers b1 . . . bm. The file contents is
then the result of concatenating Disk(b1) . . . Disk(bm) and then truncating
to get n bytes of data. If the file is a directory, then this is just the first step
and the second step is to decode the directory from the data. For example,
if file names are composed of 16-bit unicode, then the contents of a directory
file might be sequences of two byte quantities coding unicode characters,
terminated by two 0 bytes, followed by, say, 4 bytes coding an index number.
If “passwords” should be mapped to 34832 then hexadecimal encoding looks
something like this:

70, 61, 73, 73, 77, 6F, 72, 64, 73, 00, 00, 00, 00, 88, 10

The actual coding is interesting and important, but for this paper, I just
want to sketch out one method for concreteness so that

file : Integers× SequenceOfBlockNumbers→ Contents

and
DecodeDirectory : Contents→ {Strings→ Indexes}

seem plausible.
The map α depends on similar encoding. To start, assume we can encode

both the length n and the sequence of block numbers of a file in a single
block. Let’s also encode in that block a “type” that tells us if a file is
ordinary, directory, or soft link. The disk drives that were the design targets
of the UNIX file system could store somewhere around 222 bytes of data in
213 blocks. Disk drives at the time of the writing of this paper can easily hold

5

242 or more bytes in 233 blocks. In either case, a single disk block cannot
hold enough disk block numbers for a really big file so some of the disk block
numbers in the sequence encoded in the block are used as indirect numbers
- they point to blocks that encode more numbers. The details of this are not
covered here - see [?] for explanations.

α : Indexes→ Contents
DecodeSequence : Blocks→ SequencesOfBlockNumbers
DecodeSize : Blocks→ Integers
DecodeType : Blocks→ {ordinary, directory, softlink}
α1 : Indexes→ BlockNumbers
α2(i) = file(DecodeSize(Disk(α1(i))), DecodeSequence(Disk(α1(i))))

α(i) =

α2(i) if DecodeType(Disk(α1(i))) ∈ {ordinary, softlink}
DecodeDirectory(α2(i)) if DecodeType(Disk(α1(i))) = “directory′′

undefined otherwise

file(n,x) = truncate(n,Concatenate(Disk(x1) . . . Disk(xn)))

4 Discussion

The efficiency advantages of the decomposition above are reasonably obvious
to anyone with an intuition about system programming but we can also
make an informal complexity analysis. Think of file system maps as finite
sets of pairs: in practice file systems are finite. Searching for a file in a map
Paths(X) → Contents would, on average take n/2 steps where n is the
number of pairs. This search would involve testing sequences to see if they
are equal on each step. This means each step of the search involves multiple
steps to compute the match. To speed up this search, we need to map
paths to some sorted data rather than an unordered set. That is what the
embedding does. Directory maps involve much simpler matching because we
are matching strings not sequences and directories should generally be small.
In practice, file systems can easily contain billions of files, but directories tend
to contain just a few entries. If the average size of a directory is k elements,
then an n element file system will average a depth of only logk(n). So for a
file system containing one billion ordinary files with average of 10 elements
in a directory, 9 steps through the tree would resolve an average path with
each step requiring comparison of a string (not a path) to an average of 5

6

other strings taking us to 45 string matches plus 9 lookups of directories.
Compare that to 500,000,000 path matches.

Consider common queries on the file system such as “find(p)”. This is
efficient to compute using the tree structure. The UNIX command for a
detailed list is also efficient to compute with the embedded tree structure.
Detailed list involves extending out the index block(s) to contain additional
information - such as last modification and security/permission data. In this
case, N provides an index and α1 provides the block itself. During the 1980s
a number of development groups all made the same discovery that detailed
list was easy to make inefficient for network file systems - because the control
block for each file has to be accessed.

Of course, we could use alternative structures and it may well be that the
tradeoffs have changed sufficiently since the 1970s. Maybe a detailed analysis
of the kinds of file traversals and lookups common in a web site would reveal
a need for a different design. Similarly, disk drives are different both in scale
and operation and flash storage is common. Maybe a hash table would be
more efficient. Modern implementations usually involve an in memory hash
table used as a cache so that hash(p) = i only if N (root, p) = i. This cache
design amortizes lookup costs.

Some of the advantages of the UNIX file-system design are purely se-
mantic. The recursive structure ensures that there are no holes - no paths
that terminate at a file that skip over inaccessible directories. This property
would require additional work to guarantee in a hash-table implementation if
the architects considered it important. Another set of issues becomes obvious
once we consider modifications.

References

[1] D. M. Ritchie and K. Thompson, “The unix time-sharing system,”
Commun. ACM, vol. 17, no. 7, pp. 365–375, Jul. 1974. [Online].
Available: http://doi.acm.org/10.1145/361011.361061

[2] R. C. Daley and P. G. Neumann, “A general-purpose file system for
secondary storage,” in Proceedings of the November 30–December 1,
1965, Fall Joint Computer Conference, Part I, ser. AFIPS ’65 (Fall, part
I). New York, NY, USA: ACM, 1965, pp. 213–229. [Online]. Available:
http://doi.acm.org/10.1145/1463891.1463915

7

[3] S. Hitsu, “Persimmon tree,” in Metropolitan Museum of Art, 1816, http:
//www.metmuseum.org/collection/the-collectiononline/45392.

8

